
Model-Checking Infinite State-Space Systems with
Fine-Grained Abstractions Using SPIN

Marsha Chechik, Benet Devereux, and Arie Gurfinkel

Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada.

Email: fchechik,benet,arieg@cs.toronto.edu
Draft of February 13, 2001

Abstract. In analyzing infinite-state systems, it is often useful to define multiple-
valued predicates. Such predicates can determine the (finite) levels of desirabil-
ity of the current system state and transitions between them. We can capture
multiple-valued predicates as elements of a logic defined over finite total orders
(FTOs). In this paper we extend automata-theoretic LTL model-checking to rea-
soning about a class of multiple-valued logics. We also show that model-checking
over FTOs is reducible to classical model-checking, and thus can be implemented
in SPIN.

1 Introduction

Currently, model-checking is essentially limited to reasoning about medium-sized finite-
state models. Reasoning about large models, especially if these are not finite-state, is
typically done using abstraction [CGL94]. Abstraction techniques, such as abstract in-
terpretation [CC77], require the user to supply the mapping between concrete and ab-
stract data types in their models. Predicate abstraction, introduced by Graf and Saidi
[GS97], is a form of abstraction specified as a number of predicates over the concrete
data. For example, if we are interested in checking whether x is always positive, we can
define predicates x > 0 and x � 0, and use them to compute the abstract system. A
number of researchers, e.g., [CU98,VPP00,BDL96,DDP99,SS99], explored the use of
predicate abstraction.

However, boolean predicates often do not give the desired precision. For example,
consider reasoning about a leader-election protocol, parameterized by N – the number
of processes engaged in it. We can either set N to be a (small) constant, and define
predicates on the exact number of processes that have agreed on the elected leader; or
leave N as is, and define predicates such as “everyone agreed on the leader”, “no one
agreed on the leader”, etc. In this situation we cannot ask questions about the likelihood
of the agreement, whereas such questions may be desirable.

As an alternative, we propose modeling such systems using multiple-valued pred-
icates, where their values form a linear order. In the above situation, we can assign
different values to the level of agreement on the leader: “everyone agreed”, “the agree-
ment is likely”, “no information is available”, “the agreement is unlikely”, “no one
agreed”, obtaining a linear order on the level of agreement. Furthermore, if we do not

2

limit ourselves to classical logic, our model-checking procedure will distinguish be-
tween different values of agreement, e.g., between cases where no agreement has been
reached and where complete agreement has not been reached, but the majority have
agreed. Taking this reasoning one step further, we can assign values to transitions. Intu-
itively, a transition value is the possibility that it will be taken. Thus, we can potentially
distinguish between paths that can always be taken, paths that can likely be taken, etc.

In fact, giving predicates values from a linear order can be useful in a variety of sit-
uations: (a) consensus-building, where the abstraction is over counting (e.g., the leader-
election protocol mentioned above); (b) explicitly distinguishing between “regular” and
“faulty” behaviors, where we may be interested in properties that hold always, and those
that hold “most of the time”, i.e., over “regular” behaviors; (c) rechecking a partial
system after a change to it has been made, where we are interested in differentiating
between possible effects of the change; (d) any situation where we want to assign “de-
sirability” to a transition. This can happen in cases where we have varying tolerances,
e.g., in analyzing families of SCR specifications [HJL96].

Note that using linear order-valued predicates does not increase the expressive power
of our modeling language, since they can be encoded using a number of boolean pred-
icates. However, such encoding results in cluttering the models with lots of auxiliary
variables that bear no natural meaning, and, more importantly, greatly increases the
sizes of the models, making model-checking less feasible [HK93].

Multiple-valued reasoning has been explored in a variety of domains. For exam-
ple, a nine-valued logic is prescribed as a standard [IEE93] for VLSI design, where
the interpretation of values is in terms of voltage thresholds. Other examples include
databases [Gai79], knowledge representation [Gin87], and machine learning [Mic77].
However, most of the work concentrated on the 3-valued reasoning, with values “True”,
“Maybe” and “False”. Melvin Fitting [Fit91,Fit92] has done seminal work in studying
3-valued modal logic, and our work on logic in this paper is somewhat similar to his.
Three-valued logic has also been shown to be useful for analyzing programs using ab-
stract interpretation [CD00,SRW99], and for analyzing partial models [BG99,BG00].
Bruns and Godefroid also proved that automata-theoretic model-checking on 3-valued
predicates reduces to classical model-checking.

In this paper we give semantics to automata-theoretic model-checking over arbitrary
finite linear orders. We define multiple-valued Büchi automata and multiple-valued LTL
and show that such model-checking reduces to a classical problem, and thus can be
implemented on top of SPIN. The rest of this paper is organized as follows: we review
the definition of linear orders and define multiple-valued sets and relations over them in
Section 2. �LTL, a multiple-valued extension of LTL, is defined in Section 3. Section 4
defines multiple-valued languages and Büchi automata. In Section 5 we show how to
represent �LTL logic formulas as multiple-valued Büchi automata. Section 6 defines the
model-checking problem on multiple-valued Büchi automata and shows that it reduces
to a number of queries to a classical model-checker, such as SPIN. We conclude the
paper in Section 7.

3

T

F

T

M

F

(Definitely True)

(Maybe, Unknown)

(Definitely False)

T

L

M

U

F

(Definitely True, Must)

(Likely, Weakly True, Should, Majority True)

(Unknown, Undefined, Maybe, No Consensus)

(Unlikely, Weakly False, Should Not, Majority False)

(Definitely False, Must Not)

(a) (b) (c)

Fig. 1. (a) 2, the classical logic FTO; (b) 3, a three-valued logic FTO; (c) 5, a five-valued logic
FTO and possible interpretations of its values.

2 Preliminaries

In this section we review the definition of logics based on total orders. We also define
multiple-valued sets and relations over them.

2.1 Finite Total Orders

A partial order is a relation which is reflexive, symmetric, and transitive. A partially
ordered set, usually abbreviated poset, is a pair L = (O;v) where O is a set and v a
partial order defined on it. If, for all a; b 2 O, either a v b or b v a, then v is a total
order or linear order. We consider, for the purposes of this paper, only finite totally
ordered sets, which we refer to as FTOs.

The operations of maximum and minimum are defined on FTOs as follows:

a u b = a , a v b (minimum) a t b = b , a v b (maximum)
b u a = a , a v b (minimum) b t a = b , a v b (maximum)

Lemma 1. Let (O;v) be an FTO. Then for all a; b; c 2 O,

c v a u b, (c v a) ^ (c v b) (min-^)
c v a t b, (c v a) _ (c v b) (max-_)

We further define ? =
d
O and > =

F
O.

Any FTO of heightn is isomorphic to the integers from 0 to (n�1)with the ordinary
ordering. We call this isomorphism the canonical isomorphism for the FTO and denote
it by �L. The difference between two elements of an FTO is their absolute difference:

a	 b = j�L(a)� �L(b)j

and negation in the FTO can be defined in terms of difference:

:a , >	 a (def. of negation)

4

[1; 2; 3; : : :)

0

(: : : ;�3;�2;�1]

Fig. 2. An example of a multiple-valued set over 3.

FTOs with this definition of negation satisfy the following properties:

:(a u b) = :a t :b (De Morgan) ::a = a (: involution)
:(a t b) = :a u :b a = b, :a = :b (: bijective)

:? = > (? negation) :> = ? (> negation)
a v b, :a w :b (: antimonotonic)

In this paper we use multiple-valued logics whose truth values form an FTO. Con-
junction and disjunction of the logic are defined as u and t (meet and join) operations
of (O;v), respectively, and negation is defined as the : operator of (O;v). In fact, we
will not distinguish between an FTO and a logic it defines, referring to both as L. We
also note that most of the usual laws of logic are obtained in L, with the exception of
the laws of Universality (a u :a = ?) and Excluded Middle (a t :a = >).

Figure 1 presents several commonly-used FTOs: classical logic, a three-valued logic
with uncertainty, and a five-valued logic with more degrees of uncertainty.

2.2 Multiple-Valued Sets and Relations

Let L = (O;v) be an FTO and D be some (finite) domain. We consider OD, the set
of all total functions from D into O, and refer to elements of OD as multiple-valued
subsets of D, and, when D is clear from the context, just multiple-valued sets or MV-
sets. We introduced this notion in [CDE01a], and briefly review it below.

Definition 1. Given multiple-valued sets A;B 2 OD ,

x 2L A , A(x) (MV-set membership)
x 2L A [L B , A(x) tB(x) (MV-set union)
x 2L A \L B , A(x) uB(x) (MV-set intersection)

x 2L A , :A(x) (MV-set complement)

Consider the multiple-valued set of Figure 2. In this example, we use the three-
valued FTO 3 to model ambiguity about whether 0 is a positive integer. The MV-set is
Z
+? 2 3

Z, where for all n � 1, (n 2L Z+?) = >; for all n � �1, (n 2L Z+?) = ?;
and (0 2L Z

+?) = M.

Theorem 1. [Gol99] Let D be a finite set, and (O;v) be an FTO. Define vOD as
follows for any f; g 2 OD:

5

' U = _ (' ^ Æ(' U))
3 = _ Æ(3)
2 = ^ Æ(2)
'R = ^ (' _ Æ('R))

Fig. 3. Properties of �LTL operators.

f vOD g , 8d 2 D � f(d) v g(d):

Then (OD ;vOD) is an FTO, with MV-union and MV-intersection defined as join and
meet, respectively.

The practical use of this result is that all of the properties defined for FTOs, such as the
De Morgan rules and distributivity, carry over to MV-sets.

Given two sets P;Q, we can define a multiple-valued relation [CDE01a] on them
as a multiple-valued subset of P �Q, or an element of OP�Q.

This work is, to our knowledge, the first use of valued subsets in formal verification;
however, such theories are developed elsewhere [Eil78,Gol99].

3 �LTL

In this section we extend the semantics of LTL to allow reasoning over a given FTO
L = (O;v), representing our multiple-valued logic. We refer to the resulting language
as �LTL. Just like in classical propositional LTL, formulas in �LTL are built from a set
Prop of values of atomic propositions and are closed under the application of propo-
sitional operators, the unary temporal connective Æ (“next”) and the binary temporal
connective U (“until”). �LTL is interpreted over multiple-valued computations. A com-
putation is a function � : N ! OProp which assigns values from the logic L to the
elements of Prop at each time instant (natural number). For a computation � and a
point i 2 N, we have:

�; i j=L p , p 2L �(i)

�; i j=L :' , :(�; i j=L ')

�; i j=L ' ^ , �; i j=L ' u �; i j=L

�; i j=L ' _ , �; i j=L ' t �; i j=L

Now we define the temporal operators:

�; i j=L Æ' , �; i+ 1 j=L '

�; i j=L ' U ,
G
j�i

�
(�; j j=L) u (

l

i�k<j

�; k j=L ')
�

The value of a property on a run is the value that it has in the 0th state of the run:

� j=L ' , �; 0 j=L '

As usual,3' = >U ', 2' = :3:', and 'R = :(:'U :). �LTL operators
satisfy the expected LTL properties, for example, the fixpoint properties in Figure 3.

Consider the example in Figure 4. This figure presents partial execution of the
Leader Election protocol specified using the five-valued logic 5. Let N be the num-
ber of processes (which we assume to be an even number), and K be the number that

6

L L T L L

t0 t1 t2

F T

U U

active[i] =

le =

Fig. 4. A partial execution of the Leader Election protocol.

have agreed on the leader. We abstract K using the 5-valued predicate le (“leader
elected”) which is true when K = N , weakly true when (N=2) < K < N , undecided
when K = N=2, weakly false when 0 < K < (N=2), and false when K = 0. Let
active[i] indicate that the ith process is currently active. In this system, �; 0 j=L le

is U, �; 0 j=L le ^ active[i] is F (?), and �; 0 j=L :active[i] is T (>). The
value for le indicates that originally there was no consensus on the leader (U), then
consensus started forming (L) and was reached (T). However, in the next state one of
the processes changed its mind, and thus the consensus went back to L. For this run, the
value of 3le is T, but the value of 32le is L. Note that we get this value without the
need to re-annotate our model under a different level of abstraction and rerun the check.

4 Multiple-Valued Languages and Automata

In the task of using multiple-valued logic for system specification and verification, it
is natural to consider multiple-valued formal languages and multiple-valued automata.
We introduce them in this section.

4.1 Multiple-Valued Languages

Let � be a finite alphabet, �� be the set of all finite words over �, �! be the set of
all infinite words, and ��! = �� [�!. We can catenate any two finite words, and
consider the empty string � as the identity for catenation: w� = �w = w. The empty
string is contained in ��, but not in �!.

Definition 2. A multiple-valued language over an alphabet� is a multiple-valued sub-
set of ��, or an element in O��; a multiple-valued !-language is an element in O�!

.
A multiple-valued language X is proper if (� 2L X) = >.

We shall use the term “MV-language” to refer, indiscriminately, to any multiple-valued
language or !-language, wherever the distinction is not important. An MV-language
is an assignment of values to words. If O = 2, then an MV-language is an ordinary
formal language, where every word that is assigned value > is considered to be in the
language. The properness criterion assures that � is contained in the language as the
identity for catenation.

MV-languages are just MV-sets of words, so union, intersection, and complement
are already defined on them. The standard language operation of catenation can be
extended to the multiple-valued case, as given below.

7

Definition 3. Given X;Y 2 O�� and w 2 ��,

w 2L XY ,
G

fu;vjw=uvg

(u 2L X) u (v 2L Y) (MV-language catenation)

Transitive closure (Kleene star) and infinite closure (!) can be defined in terms of
multiple-valued catenation.

Consider the two multiple-valued languages X = fa ! T; ab ! Lg and Y =
fbc ! M; c ! Ug, defined on the logic 5. We are interested in the value that abc has
in XY . It can be formed either by catenating a and bc, with value T uM = M , or by
catenating ab and c, with value LuU = U . By the definition, we take the maximum of
those two values, making the value of abc 2L XY to be M .

4.2 Multiple-Valued Automata

A multiple-valued finite automaton A takes any word w 2 ��! and computes its
membership degree, a value inO. Thus, an automaton corresponds to a multiple-valued
language L(A). Details about multiple-valued automata on finite words (in the more
general case, of semiring-valued languages) can be found elsewhere [Eil78]; our treat-
ment of multiple-valued infinite words and their automata is, so far as we know, new,
but it is a natural extension.

A multiple-valued Büchi automaton has transitions between states that take on some
value ranging between > or ? of an FTO. This value, intuitively, is a possibility that a
transition will be taken. Thus, we can assign possibilities to individual transitions and
to infinite strings that the automaton receives.

Definition 4. A multiple-valued Büchi automaton, or �Büchi automaton, is a tuple
(L; Q; q0; �;�; F) where:

– L = (O;v) is an FTO;
– Q is a finite set of states;
– q0 is the unique initial state;
– � is a finite alphabet;
– � 2 OQ���Q is the multiple-valued transition relation. �(q; �; q 0) gives the

value of the transition from q to q 0 on symbol �;
– F is a set of accepting states.

The runs of the automaton are infinite sequences of states, always beginning with
q0. We define a projection of Q onto F as

�F (q) =

�
q if q 2 F
� otherwise

which we extend to Q!, and define the accepting runs AR of the automaton to be the
elements of

f� j �F (�) 2 F
!g:

Intuitively, AR is the set of all runs in which some accepting state occurs infinitely
often.

8

a / > c / L

e / U

b / > d / >

Fig. 5. An example �Büchi automaton.

For a �Büchi automaton A, L(A) 2 O�!

is the multiple-valued subset of �! de-
fined by the automaton. The value assigned by the automaton to a wordw = w 0w1w2 : : :
in �! is given in terms of the accepting runs:�

w 2L L(A)
�
=
G

�2AR

l

i2N

�(�i; wi; �i+1)

Consider the �Büchi automaton in Figure 5. This automaton assigns values from
5 to its inputs. In the input sequence abbcd!, the prefix abb takes the automaton only
through>-valued transitions. Then, c follows an L-transition to an accepting state; after
this occurs, the value of the whole sequence cannot exceed L. The automaton loops
through the accepting state on the infinite sequence of d’s, so this word is accepted with
value L.

�Büchi automata are similar in spirit to Markov chains [Fel68]. Markov chains also
assign values, representing probabilities, to nonterminating finite-state computations,
and have been used [VW86] to check probabilistic system specifications. Our approach
is more possibilistic, motivated by the problem of requirements analysis. Given two
independent events, the probability of the occurrence of at least one is the sum of their
individual probabilities; but the possibility or necessity of at least one event occuring is
the maximum of their individual possibilities.

4.3 Composition

Our definitions of parallel composition, synchronous and asynchronous, are extensions
of the standard construction [Tho90].

We start by defining synchronous parallel composition, or MV-intersection of lan-
guages. LetL1 andL2 be multiple-valued!-languages andA1 = (L; Q1; q

1
0 ; �;�1; F1)

and A2 = (L; Q2; q
2
0 ; �;�2; F2) be �Büchi automata for L1 and L2, respectively.

We construct two classical automata, Âi (for i = 1; 2), where �̂i(q; �; q
0) is true

exactly if �i(q; �; q
0) 6= ?. Then we intersect the two classical automata, creating

Â12 = (Q1 � Q2 � f0; 1; 2g; (q1; q2; 0); �; �̂12; F1 � F2 � f2g). Finally, we create
the multiple-valued intersection of the two �Büchi automata by transforming Â12 into
a �Büchi automatonA12 with the new multiple-valued transition relation:

�12

�
(q; r; j); �; (q0; r0; j0)

�
=

�
�1(q; �; q

0) u�2(r; �; r
0) if �̂12

�
(q; r; j); �; (q0; r0; j0)

�
? otherwise

for all j 2 f0; 1; 2g.

Theorem 2. The value thatA12 gives to a word w is the same as its value in L1\LL2.

9

a / >

b / L

c / >

a / >

q0

q1

q2

b / >

a / >

r0 r1

b / L

a / >

(q0; r0; 0) (q2; r1; 2)

(a) (b) (c)

Fig. 6. Intersection of �Büchi automata. (c) shows the intersection of automata in (a) and (b).

Figure 6 illustrates the intersection construction. The first automaton gives the value
> to ac! and L to ba!; the second gives value > to ba!. Every other word evaluates
to ?. In the intersection, ac! becomes ?, and ba! evaluates to the minimum of L and
>, namely L. Note that (q2; r1) is labelled with 2, making it an accepting state in the
intersection automaton, because it is a final state in both A1 and A2.

We proceed to define asynchronous composition on two �Büchi automata with
(possibly different) alphabets and the same logic.

Definition 5. LetA1 = (O; Q1; q
1
0 ; �1; �1; F1),A2 = (O; Q2; q

2
0 ; �2; �2; F2) be two

�Büchi automata. The asynchronous compositionA 1jjA2 = (O; Q1�Q2; (q
1
0 ; q

2
0); �1[

�2; �; F) of the two automata has the following transition relation:

�
�
(q1; q2); �; (q

0
1; q2)

�
= �1(q1; �; q

0
1) if q1 6= q01

�
�
(q1; q2); �; (q1; q

0
2)
�
= �2(q2; �; q

0
2) if q2 6= q02

�
�
(q1; q2); �; (q1; q2)

�
= �1(q1; �; q1) t�2(q2; �; q2) otherwise

5 Conversion between �LTL and �Büchi Automata

In this section we describe how to convert between �LTL formulas, defined in Section 3
and �Büchi automata. Our algorithm is based on the classical LTL to Büchi automata
conversion algorithm presented in [GPVW95].

As in [GPVW95], we start by defining Generalized �Büchi Automata and Labeled
Generalized �Büchi Automata (LG�BA).

Definition 6. A Generalized �Büchi automaton (G�BA) is a tuple (L; Q; q0; �;�;F)
whereL; Q; q0; � and� are as in ordinary �Büchi automata, butF = fF1; F2; : : : ; Fkg
is a set of k sets of accepting states. Each set Fi has the projection �Fi defined for it, and
the accepting runs are those where at least one element from each F i appears infinitely
often:

AR = f� j � 2 q0Q
! ^ 8i � k � �Fi(�) 2 F

!
i g

Definition 7. A Labeled Generalized �Büchi Automaton (LG�BA) is a tuple (L; Q; q0;
�;�;F ; Lab) where:

– L = (O;v) is an FTO;
– Q is a finite set of states;

10

– q0 is the unique initial state;
– � = OProp is an alphabet consisting of all multiple-valued sets over the set Prop

of propositional symbols;
– � 2 OQ�Q is a multiple-valued transition relation;
– F = fF1; F2; : : : Fng is a set of sets of accepting states;
– Lab : Q ! 2Prop[:Prop is a labeling function that assigns a subset of Prop [
:Prop to every state.

The set of accepting runs (AR) for a LG�BA is defined the same as for a Generalized
�Büchi automaton given in Section 4.

Notice that each element � 2 � is a total function from Prop to O. We extend
this function to elements of :Prop by defining �(:p) , :�(p), 8p 2 Prop. Let
�̂ : 2Prop[:Prop ! O be a set-wise extension of �, defined as

�̂(D) ,
l

d2D

�(d) (set-wise extension)

For a Labeled Generalized �Büchi automaton A, L(A) 2 O�!

is the multiple-
valued subset of �! defined by the automaton. The value assigned by the automaton to
a word w = w0w1w2 : : : in �! is given in terms of the accepting runs:

w 2L L(A) =
G

�2AR

l

i2N

�(�i; �i+1) u ŵi
�
Lab(�i+1)

�

where ŵi is the set-wise extension of wi.
Given an LTL property ', the algorithm in [GPVW95] constructs a Labeled Gen-

eralized Büchi automaton in two major steps. In the first step, it uses the syntactic
structure of the formula to construct a graph G = (V;E) together with three labeling
functions, New, Old, and Next, that assign a subset from a closure of ' to each node
of G. In the second step, the algorithm constructs an automaton, using G to define its
basic structure, and the labeling functions to define its accepting states and state labels.
The resulting Generalized Labeled Büchi automaton accepts a word if and only if the
word satisfies '. This automaton can be easily converted into a Büchi automaton with
a polynomial blowout in its size.

Since �LTL is syntactically equivalent to LTL, we reuse the graph construction part
of the algorithm in [GPVW95]. Thus, given a �LTL property ', our algorithm starts by
constructing a graph G = (V;E) and the node labeling functions New, Old, and Next
using the procedure in [GPVW95]. However, we modify this procedure to ensure the
correct handling of p^ :p (not necessarily?) and p_ :p (not necessarily>), where p
is any propositional formula. The algorithm then proceeds to construct a LG�BA A =
(L; Q; q0; �;�;F ; Lab) by letting the set of states Q of the automaton be the nodes of
G, with the root node of G being the initial state q0. The accepting set F is constructed
as in the original algorithm. The transition relation � is constructed from the edges
of the graph G such that �(q; q 0) = > if the edge (q; q0) is in G, and �(q; q0) =
? otherwise. Finally, the labeling function Lab is constructed as a restriction of the
labeling function Old to the set of all positive and negative propositional symbols of ';
that is, for a given state q, Lab(q) = Old(q) \ (Prop [:Prop). It is easy to show
that the resulting LG�BA can be transformed into a �Büchi automaton via an extended
version of the transformation used in the classical case.

11

f g

fpg

f g

q0

q1

q2

q3

Fig. 7. A LG�BA corresponding to 3p.

For example, consider the automaton in Figure 7 which corresponds to a �LTL
property3p. In this figure we show only> transitions. Every accepting run of this au-
tomaton must pass through the state q2. Therefore, the value that the automaton assigns
to a given word w is G

i2N

(p 2L wi)

which corresponds to the definition of w j=L 3p from Section 3.

Theorem 3. The automaton A constructed for a property ' assigns a value ` to an
infinite sequence w over OProp if and only if ` = (w j=L ').

Proof. The proof is a straightforward extension of the proof of correctness of the algo-
rithm in [GPVW95], and is omitted here. ut

The immediate consequence of Theorem 3 is that if L is 2, the automaton constructed
by our algorithm is equivalent to the Labeled Generalized Büchi automaton produced
by the original algorithm in [GPVW95].

6 �LTL Model-Checking

In this section we define automata-theoretic multiple-valued model-checking and de-
scribe a decision procedure for it.

6.1 The Model-Checking Problem

Automata-theoretic model-checking procedure can be viewed as a function that re-
ceives a program P and property ' and returns a value from the logic L indicating
the possibility that (the degree to which) P satisfies '. For example, in the classical
case MC(P; ') = > if and only if every computation of P satisfies '. In the remain-
der of the paper we use MC to indicate the classical model-checking function. MC is
formally defined as

MC(P; ') , 8w 2 �! � w 2 L(AP)! w 2 L(A') (MC-definition)
whereAP andA' are the Büchi automata corresponding to the programP and property
', respectively.

We extend this definition to the multiple-valued case and define a multiple-valued
model-checking function �MC as follows:

12

fag / > fcg / L

feg / U

fbg / > fdg / >

q0 q1 q2

Fig. 8. An example Büchi automaton 2.

Definition 8. Let P be a multiple-valued program, ' a �LTL property, andAP ,A' the
corresponding �Büchi automata. Then, the multiple-valued model-checking function
�MC is defined as

�MC(P; ') ,
l

w2�!

�
w 2L L(AP)! w 2L L(A')

�
(�MC-definition 1)

, :
G

w2�!

�
w 2L L(AP) u w 2L L(A:')

�
(�MC-definition 2)

Intuitively, the possibility of a program satisfying a property is inversely propor-
tional to the possibility that the program can produce a computation violating the prop-
erty. For example, consider a �Büchi automaton in Figure 8, corresponding to some
program P . The set of propositional symbols of this automaton is fa; b; c; d; eg, and
as each transition is taken, exactly one of these symbols becomes > and the rest be-
come ?. For example, when a transition from state q0 to state q1 is taken, only propo-
sitional symbol a becomes >. Any non-? computation w of this automaton contains
a wi such that (d 2L wi) = >; therefore, the result of �MC(P;3d) is >. That is,
the program satisfies the property 3d with the value >. On the other hand, the value
of �MC(P;32d) = L since there exists a computation w = fag(fcgfdgfeg)!, s.t.�
w 2L L(A)

�
= U and

�
w 2L L(:32d)

�
= >.

To establish correctness of our definition we show that it is equivalent to the classical
definition when the logic used is 2, and that it preserves the expected relationships
between programs and �LTL properties.

Theorem 4. Let P be a program, ' be a (�)LTL property, and AP , A' be the corre-
sponding (�)Büchi automata. Then, if the logic L used to define the �Büchi automata
is 2, then

MC(P; ') = �MC(P; ')

Proof. Follows directly from the definitions of MC and �MC. ut

Intuitively, the degree to which a program P satisfies a conjunction of two proper-
ties cannot exceed the degree to which it satisfies each of these properties individually.
Similarly, the degree to which a program P satisfies a disjunction of two properties is
higher then the degree to which it satisfies each of the properties individually. Finally,
in the classical case, if two programs satisfy a property, then so does their independent
composition. This implies that in the multiple-valued case the degree to which a pro-
gram P1+P2 satisfies a given property' must equal the smallest degree to which each
program satisfies the property individually.

13

Theorem 5. Let P1 and P2 be programs, and ' and be �LTL properties. Then,

(1) �MC(P; ' ^) = �MC(P; ') u �MC(P;) (property intersection)
(2) �MC(P; ') t �MC(P;) v �MC(P; ' _) (property union)
(3) �MC(P1 + P2; ') = �MC(P1; ') u �MC(P2; ') (program composition)

Proof. The proof of (1) and (2) is based on the fact that the language of a �Büchi
automaton A'^ (A'_) is the multiple-valued intersection (union) of the languages
L(A') and L(A) corresponding to the properties ' and , respectively. The proof of
(3) is based on the fact that the language of a �Büchi automatonAP1+P2 is the multiple-
valued union of the languages L(AP1) and L(AP2) corresponding to programs P1 and
P2, respectively. ut

6.2 Decision Procedure for �LTL Model-Checking

In this section we show that a single �LTL model-checking problem, with an FTO of
size jOj, can be transformed into (jOj � 1) classical model-checking problems.

Recall the definition of MC(P; '). The formal definition is equivalent to the prob-
lem of language containment; we must check that L(AP) � L(A'). In practice, this is
done via checking for emptiness ofL(AP)\L(A'), whereL(A') = L(A:') [VW86].
A classical !-language, viewed as an elementZ 2 2

�!

, is nonempty if and only if there
exists a w 2 �! such that (w 2L Z) = >; that is,

Nonempty(Z) , > v
� _
w2�!

(w 2 Z)
�

(non-emptiness)

We wish to restate �MC (P ; ') in terms of language intersection and emptiness as
well, so we start by generalizing the above definition to MV-languages.

Definition 9. Let Z be an MV-language, L = (O;v) be an FTO, and ` 2 (O n f?g).
Then

Nonempty(Z; `) , ` v
� G
w2�!

(w 2L Z)
�

(`-non-emptiness)

If O = 2 and ` = >, this definition reduces to the classical definition of emptiness.
In the multiple-valued case, however, we can have degrees of emptiness, and this is
captured by the generalized definition. For instance, if the maximal value of any word
in an MV-language is M, then it is M-nonempty, but not L-nonempty or >-nonempty.

We now define a reduction on MV-automata w.r.t. a logic value `, known as an
`-cut [CDE+01b].

Definition 10. Let L = (O;v) be an FTO. Then for any �Büchi automaton A =
(L; Q; q0; �;�; F) and ` 2 O, an `-cut ofA, denotedA`, is an automaton (Q; q0; �;�`;
F) where:

�`(q; �; q0) =

�
> if ` v �(q; �; q0)
? otherwise

(definition of �`)

The conversion from anyA toA` can be done inO(jQj2) time. Now we establish a few
properties of `-cuts.

14

Theorem 6. Let A1 and A2 be arbitrary �Büchi automata. Then

L
�
(A1 \L A2)

`
�
= L(A`1) \ L(A

`
2) (`-cut of language intersection)

Proof.

w 2 L
�
(A1 \L A2)

`
�

, Definition of cut

` v (w 2L L
�
(A1 \L A2)

�
, Theorem 2

` v
�
w 2L (L(A1) \L L(A2))

�
, MV-intersection

` v
�
(w 2L L(A1)) u (w 2L L(A2))

�
, min-^ rule�

` v (w 2L L(A1))
�
^
�
` v (w 2L L(A2))

�
, Definition of cut�

w 2 L(A`1)
�
^
�
w 2 L(A`2)

�
, Intersection

w 2 L(A`1) \ L(A
`
2)
�

ut

Theorem 7. Let A1 and A2 be arbitrary �Büchi automata. Then

L
�
(A1 jj A2)

`
�
= L

�
A`1 jjA

`
2

�
(`-cut of parallel composition)

Proof. It is obvious that all transitions which are not self-loops will be in the `-cut
of the composition if and only if they are in the `-cut of the process which moves on
the transition. Let � be the transition relation of (A1 jj A2)

`, and �0 be the transition
relation of (A`1 jj A

`
2). We show that the existence of a self-loop in � is equivalent to

the existence of a self-loop in �0:
�
�
(q1; q2); �; (q1; q2)

�
, cut of parallel composition

` v �1(q1; �; q1) t�2(q2; �; q2)

, max-_

(` v �1(q1; �; q1)) _ (` v �2(q2; �; q2))

, definition of cut

�`
1(q1; �; q1)) _�

`
2(q2; �; q2)

, classical parallel composition

�0
�
(q1; q2); �; (q1; q2)

�
ut

Cuts can also be used to define the decision procedure for MV-language emptiness.

Theorem 8. Let L = (O;v) be an FTO. Then for any �Büchi automaton A =
(L; Q; q0; �;�; F) and ` 2 O, the `-nonemptiness of A is decidable.

15

Given a system P , and a �LTL property ':

1. Convert :' to a �Büchi automaton A:' using the method of Section 5.
2. Compute C = P \L A:' according to the construction of Section 4.3.
3. For each ` 2 O, construct the cut C` and check it for nonemptiness.
4. Let `max be the maximal ` for which C` is nonempty.
5. Return :`max.

Fig. 9. Decision procedure for multi-valued model-checking.

Proof. Construct A`, the `-cut of A. L(A`) is nonempty if and only if there is some
word w, for which there is an accepting run � 2 AR with only >-valued transitions.
That is:

w 2 L(A`)

, Büchi acceptance

9� 2 AR � 8i 2 N ��`(�i; wi; �i+1)

, definition of �`

9� 2 AR � 8i 2 N � ` v �(�i; wi; �i+1)

, min-^ rule

9� 2 AR � ` v
l

i2N

�(�i; wi; �i+1)

, max-_ rule

` v
G

�2AR

l

i2N

�(�i; wi; �i+1)

, �Büchi acceptance

` v
�
w 2 L(A)

�
In other words, if L(A`) is nonempty, then there is some word w such that ` v

(w 2L L(A)), and L(A) is `-nonempty. Since A` is a classical Büchi automaton, its
nonemptiness is decidable [Tho90]. ut

We now have an effective decision procedure for finding the `-nonemptiness of
L(AP) \L L(A:') for any ` 2 O. We can iterate this procedure to find the maximal
` for which this intersection is non-empty. The complement of this maximal ` can be
returned as the value of property' in system P . Figure 9 describes the model-checking
procedure in detail. In order to gain some intuition for this result, first consider the
classical case, where we simply need to check that the intersection of the system with
the negated property automaton is>-nonempty: if it is>-nonempty, there are?-valued
counterexamples to the property.

6.3 �LTL Model-Checking in SPIN

In this section we show how to implement a multi-valued automata-theoretic model-
checker, which we call MV-SPIN, using SPIN as a black box.

In Section 6.2 we established that model-checking of a property ' over a system
P reduces to computing a series of `-cuts over P \L A:'. By Theorem 6, we can

16

procedure MV-SPIN (P , ')
A' = B2Prom(�2B('))
for ` = > downto ?

P 0 = Cut(P , `)
A0

' = Cut(A', `)
ce = SPIN (P 0, A0

')
if (ce 6= ;)

return :` as answer and
ce, if present, as the counter-example

Fig. 10. Algorithm for MV-SPIN.

perform `-cuts of the property and the system automaton individually. We also note
that the system is usually not a monolithic Promela model, corresponding to one Büchi
automaton, but a collection of processes which are run under asynchronous parallelism.
Furthermore, SPIN does not compute the entire automaton of the model; instead, it
performs model-checking on-the-fly [GPVW95]. Thus, our goal is to specify multiple-
valued models in some Promela-like language, extended with MV-semantics and then
generate Promela without building the complete Büchi automata.

Extending Promela with multiple-valued guard commands is not difficult, as indi-
cated by the work on probabilistic GCL [HSM97]. Asynchronous parallel composition
of �Büchi automata was given in Definition 5. By Theorem 7, `-cuts of the entire model
are equal to `-cuts of each individual process. Assume that this operation is done by
function Cut which takes a model in extended Promela and a logic value ` and converts
it into “regular” Promela while performing the reduction `-cut.

The algorithm for MV-SPIN is given in Figure 10. Functions�2B and B2Prom are
the modifications of existing LTL to Büchi automata and Büchi automata to Promela
algorithms, respectively, enriched to handle �Büchi automata. The result of SPIN is
stored in ce. If ce is empty, the classical model-checking procedure succeeded; else,
ce is returned as the counter-example.

Note that the performance penalty of MV-SPIN w.r.t. SPIN manifests itself in a
O(jOj) expansion in the size of the Büchi automaton constructed from the �LTL prop-
erty, in executing SPIN up to jOj times and in executing up to 2 � jOj cuts. Cuts are
performed on individual Promela processes and are proportional to the number of lines
in respective text files. Thus, we get an overall O(jOj2) performance penalty. How-
ever, the sizes of resulting models are smaller than they would have been if we replaced
multiple-valued variables by a collection of boolean variables. In addition, FTOs allow
to compactly represent incompleteness and uncertainty in the system; such situations
can be modeled in classical logic by using additional variables and thus leading to the
exponential growth in the size of the state space [CDE01a].

7 Conclusion

In this paper we extended classical automata-theoretic model-checking to reasoning
over multiple-valued logics, whose values form total linear orders. We gave semantics
to a multiple-valued extension of LTL, called �LTL, described notions of multiple-
valued languages and automata, and defined a general model-checking problem. We
also showed that the multiple-valued model-checking problem reduces to a set of queries

17

to a classical model-checking procedure, and thus can be easily implemented on top of
SPIN.

We further note that FTOs are a subclass of quasi-boolean logics – logics based
on lattices with specially-defined negation. We used quasi-boolean logics in our previ-
ous work [CDE01a,CDE+01b]. In fact, our definitions of �LTL, �Büchi automata and
multiple-valued model-checking can be used verbatim if we replace FTOs by quasi-
boolean logics. Furthermore, Theorem 8 also holds for all join-irreducible [CDE +01b]
elements of the lattices. However, we do not yet have an effective decision procedure
for other elements of the logic.

Acknowledgments

We thank members of the University of Toronto formal methods reading group, and in
particular Steve Easterbrook and Albert Lai, for many useful discussions. This work
was financially supported by NSERC and CITO.

References

[BDL96] C. Barret, D. Dill, and K. Levitt. “Validity Checking for Combinations of Theories
with Equality”. In Formal Methods in Computer-Aided Design, volume 1166 of
LNCS, pages 187–201, November 1996.

[BG99] G. Bruns and P. Godefroid. “Model Checking Partial State Spaces with 3-Valued
Temporal Logics”. In Proceedings of CAV’99, volume 1633 of LNCS, pages 274–
287, 1999.

[BG00] G. Bruns and P. Godefroid. “Generalized Model Checking: Reasoning about Partial
State Spaces”. In Proceedings of CONCUR’00, volume 877 of LNCS, pages 168–
182, August 2000.

[CC77] P. Cousot and R. Cousot. “Static Determination of Dynamic Properties of General-
ized Type Unions”. SIGPLAN Notices, 12(3), March 1977.

[CD00] M. Chechik and W. Ding. “Lightweight Reasoning about Program Correctness”.
CSRG Technical Report 396, University of Toronto, March 2000.

[CDE01a] M. Chechik, B. Devereux, and S. Easterbrook. “Implementing a Multi-Valued Sym-
bolic Model-Checker”. In Proceedings of TACAS’01, April 2001.

[CDE+01b] M. Chechik, B. Devereux, S. Easterbrook, A. Lai, and V. Petrovykh. “Efficient
Multiple-Valued Model-Checking Using Lattice Representations”. Submitted for
publication, January 2001.

[CGL94] E.M. Clarke, O. Grumberg, and D.E. Long. “Model Checking and Abstraction”.
IEEE Transactions on Programming Languages and Systems, 19(2), 1994.

[CU98] M. Colon and T. Uribe. “Generating Finite-State Abstractions of Reactive Systems
using Decision Procedures”. In Proceedings of the 10th Conference on Computer-
Aided Verification, volume 1427 of LNCS. Springer-Verlag, July 1998.

[DDP99] S. Das, D. Dill, and S. Park. “Experience with Predicate Abstraction”. In Proceed-
ings of the 11th International Conference on Computer-Aided Verification, volume
1633 of LNCS, pages 160–171. Springer-Verlag, 1999.

[Eil78] S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press, New
York, 1978.

[Fel68] W. Feller. An Introduction to Probability Theory and its Applications, volume I. John
Wiley and Sons, New York, 1968.

18

[Fit91] M. Fitting. “Many-Valued Modal Logics”. Fundamenta Informaticae, 15(3–4):335–
350, 1991.

[Fit92] M. Fitting. “Many-Valued Modal Logics II”. Fundamenta Informaticae, 17:55–73,
1992.

[Gai79] Brian R. Gaines. “Logical Foundations for Database Systems”. International Journal
of Man-Machine Studies, 11(4):481–500, 1979.

[Gin87] M. Ginsberg. “Multi-valued logic”. In M. Ginsberg, editor, Readings in Nonmono-
tonic Reasoning, pages 251–255. Morgan-Kaufmann Pub., 1987.

[Gol99] J. S. Golan. Power Algebras over Semirings. Kluwer Academic, 1999.
[GPVW95] R. Gerth, D. Peled, M. Vardi, and P. Wolper. “Simple On-the-fly Automatic Verifi-

cation of Linear Temporal Logic”. In In Proceedings of 15th Workshop on Protocol
Specification, Testing, and Verification, Warsaw, North-Holland, June 1995.

[GS97] S. Graf and H. Saidi. “Construction of Abstract State Graphs with PVS”. In Proceed-
ings of the 9th International Conference on Computer-Aided Verification, volume
1254 of LNCS. Springer-Verlag, 1997.

[HJL96] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. “Automated Consistency Checking
of Requirements Specifications”. ACM Transactions on Software Engineering and
Methodology, 5(3):231–261, July 1996.

[HK93] R. Hähnle and W. Kernig. Verification of switch-level designs with many-valued
logic. In International Conference LPAR ’93, volume 698. Springer-Verlag, 1993.

[HSM97] J. He, K. Seidel, and A. McIver. Probabilistic models for the guarded command
language. Science of Computer Programming, 28(2–3):171–192, April 1997.

[IEE93] IEEE Standard 1164–1993. 1993.
[Mic77] R. S. Michalski. “Variable-Valued Logic and its Applications to Pattern Recognition

and Machine Learning”. In D. C. Rine, editor, Computer Science and Multiple-
Valued Logic: Theory and Applications, pages 506–534. North-Holland, Amsterdam,
1977.

[SRW99] M. Sagiv, T. Reps, and R. Wilhelm. “Parametric Shape Analysis via 3-Valued Logic”.
In Proceedings of 26th Annual ACM Symposium on Principles of Programming Lan-
guages, 1999.

[SS99] H. Saidi and N. Shankar. “Abstract and Model Check while you Prove”. In Proceed-
ings of the 11th Conference on Computer-Aided Verification, volume 1633 of LNCS,
pages 443–454, July 1999.

[Tho90] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, chapter 4, pages 133–191. Elsevier Science Publish-
ers B. V., 1990.

[VPP00] W. Visser, S. Park, and J. Penix. “Applying Predicate Abstraction to Model Check
Object-Oriented Programs”. In Proceedings of 4th International Workshop on For-
mal Methods in Software Practice, August 2000.

[VW86] M. Y. Vardi and P. Wolper. “An Automata-Theoretic Approach to Automatic Program
Verification”. In Proceedings of 1st Symposium on Logic in Computer Science, pages
322–331, Cambridge MA, 1986.

